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Abstract

In contradistinction to a widespread belief, Wigner'e theorem allows the construction

of true joint probabilities in phase space for distributions describing the object system as
well as for distributions depending on the measurement apparatus. The fundamental role

of Heisenberg's uncertainty relations in SchrSdinger form (including correlations) is pointed
out for these two possible interpretations of joint probability distributions. E.g., in order
that a multivariate normal probability distribution in phase space may correspond to a

Wigner distribution of a pure or a mixed state, it is necessary and su_cient that Heisenberg's
uncertainty relation in Schr/_linger form should be satisfied.

1 Introduction

Joint measurements of conjugate variables q and p are realized in many optical devices. This

implies that one can think in this domain of a representation of quantum mechanics by means of

joint probability distributions (j.p.d.) in the phase space of conjugate variables q and p [1]. This

is perhaps the most convenient way to a realistic underpinning of quantum mechanics. A major

advantage is that the incompatible variables q and p are c-numbers. The Wigner distribution

function, which is widely used in optics, is the simplest language for coherent and squeezed states

[2]. For these states the Wigner function is nonnegative. However, it is well known that the Wigner
distribution cannot be considered as a true (nonnegative) probability distribution in general [3].

The aim of this paper is twofold: in the first part (sections 2 and 3) we present an analysis

of the central question to consider phase space representations of quantum mechanics as true

(nonnegative) probability distributions [4, 5] ; in the second part (sections 4 and 5) we emphasize

the fundamental role of Heisenberg's uncertainty relations in SchrSdinger form for Gaussian Wigner

distributions and compare this with j.p.d, depending on the measurement arrangement (positive

operator valued measures).

2 Wigner's theorem

On account of the commutation relations between the operators _ and i6, there is no unique

operator corresponding to the monornial qnp_. As a consequence there is no unique construction
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of the j.p.d.. In general, a j.p.d, is completely determined by a given correspondence rule.

Notwithstanding this arbitrareness, the existence of true probabilities in phase space is severely

restricted by Wigner's theorem [3], which considers the following five requirements:

(1) The j.p.d, is the mean value of an hermitian operator/_'(q,p) depending on the c-numbers
q and p: .f(q,p) = tr[k(q,p)_].

(2) The j.p.d, is a linear functional of the density matrix (sesquilinear in the wavefunction):
this means that/f(q, p) is independent of _.

(3) The j.p.d, is a true probability function: f(q, p) >_ O.

(4) When integrating over momentum space, the marginal distributions coincide with the

proper quantummechanical probabilities in q: f .f(q,p)dp =< q I P I q >.

(5) When integrating over position, the marginal distributions coincide with the proper quan-

tummechanical probabilities in p: ff(q,p)dq =< p Ik IP >.

Theorem 1 The five requirements (I)-(5) are iacompatible.

The requirement (2) is not explicitely present in the original version of Wigner's theorem; the

necessity of this requirement was emphasized by Mfig_r-Sddgchter [6], who observed that in the

absence of the arbitrary restriction (2) Wigner's theorem cannot be realized. In the stronger

version of Kruszynski and de Muynck [7] the requirement on one marginal distribution suffices.

3 Realisation of positive phase space distributions

For our purpose, it is sufficient to consider two different interpretations of j.p.d, as functionals of

the density matrix.

(1) The j.p.d, f(q,p) is interpreted as the probability that the variables q and p have certain

values, the variable considered as a property possessed by the object system. In this case, two

possibilities are left open for the construction of true j.p.d.:

(1.1) f(q,p) is a linear functional of _.

In this case the requirements (1)-(5) are only compatible with a restricted class of functions.

E.g. for the Weyl correspondence rule, the restricted class of functions axe Gaussons (see section 4).

The Wigner distribution cannot be considered as a true probability distribution in general, because

e.g. it takes necessarily negative values for pure states that are not Gaussons. However, one

can easily construct positive non-Gausnian Wigner j.p.d, corresponding to mized states. For

a representation of quantum mechanics by means of true Wigner j.p.d, one can add the new

requirement that only nonnegative j.p.d, are physical states. This means e.g. that a one photon

state in represented by a mixed state [10]. This idea is made plausible by the experimental fact

that it is impossible to prepare a pure state with 100 % efficiency.

(1.2) f(q,p) is a nonlinear functional of _.

J.p.d. which are a nonlinear functional of the density matrix are not restricted by Wigner's

theorem. The j.p.d, which is the product of the proper quantum mechanical marginal distributions

is a trivial example: f(q,p) =< q [ _ I q >< P I P I P >. Non-trivial examples with correlations

exist also in the literature [ll].In this case the j.p.d, is a multilinear functional of the density

matrix. We have considered a complete analysis of true distributions which are quadratic functional
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of the density matrix [5]. This results in a new concept of j.p.d, which is based on a consistent

phase space interpretation of the energy eigenstates of the wave function.

(2) The j.p.d. /(q, p) is not function of the object system alone, but may also depend on the

measurement arrangement of two incompatible observables Q and P. The measurements mutually

influence each other in such a way that the singly measured quantum probability functions cannot

be reproduced from the measurement results. In this case it is no longer desirable that the

marginal probability distributions equal the single measured ones, hence Wigner's theorem does

not restrict this class of j.p.d, and/(q,p) may be a linear function of the density matrix. The

optimal stochastic phase-space representations introduced by Prugove_ki [12] are an example of

this class. In general the distributions of class (2) can be considered in the framework of positive

operator valued measures [13].

4 Heisenberg's uncertainty relation in SchrSdinger form

and coherent and squeezed Wigner distributions

We consider case (1.1) for the Weyl correspondence rule. In this case the construction of true

j.p.d, for pure states is restricted by the remarkable and important theorem which was proven by

Hudson [8] for one-dimensional systems and generalized by Soto and Claverie [9] for systems with

an arbitrary number of degrees of freedom.

Theorem 2 The necessar_ and sufficient condition for the Wigner distribution f'ar_ction of a pure

state to be nonnegative is that the corresponding _are f_nction < ql_b > is the ezponential of a

quadratic form.

As a consequence the wave function represents a coherent or a squeezed state and the j.p.d, is

a bivsriate or a multivariate normal (Gaussian) distribution in phase space. Conversely, in two--

dimensional phase space of the conjugate random variables q and p the most general normalised

bivsriate normal probability distribution with mean values q and _ can be put in the standard
form

1 {1 1f(q,p) = 2--_--_exp -_ [a,(q- _)' - 2_r,a,(q-q)(p -/_) + _,(p-/_)'] , (1)

where aq and _ and aq_ represent respectively the v_ances and the covariance _rq = E[(q - q)2],

etc.; E denotes the expectation value and A is the determinant of the covariance matrix: A =

2 > 0 Schr5dinger derived a more general and stronger form of Heisenberg's uncertaintyO'qO'p- O'q@ __ .

relation including the correlation _qa,:

_ > t12/4, (2)

which we call "Heisenberg's uncertainty relation in SchrJdinger form". It is easy to derive and

to diagonalise the corresponding density matrix. /(q,p) may now represent a pure or a mixed

state. The eigenfunctions < q]_b > are oscillator eigenfunctions functions multiplied by a common

q-dependent phase factor which is characteristic for the correlation. We can show explicitely that

there is a close connection between a Gaussian distribution in phase space, quadratic Hamiltonians

and temperature dependent oscillator states. This implies a connection between physical mad
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statistical parameters. The eigenvalues of the corresponding density matrix are (1 - z)z '_ with

z = (A -- _/2)/(A + h/2), which leads to a su_cient condition for a bivariate normal probability

distribution to be a quantum state:

Theorem 3 In order that a bivariate normal probability distribution in phase space with variances

aq, crp and covariance aq_ may correspond to a Wigner distribution o/a pure or a mized state, it is

necessary and suJ_cient that Heisenberg's uncertainty relation in SchrSdinger form aqap - aq_ 2 >

h2/4 should be satisfied [4, 14].

It is very remarkable that the Schr&iinger form of Heisenberg's uncertainty relation, which is s

necessary condition to be ful_led for every Wigner distribution function, is also a su_cient condi-
tion in the case of a bivariate normal probability distribution. Indeed, to be s Wigner distribution

function, f(q, p) must satisfy an infinite set of KLM [15] or equivalent conditions in general, but
for the two-dimensional Ganssian distribution the infinite set reduces to one simple necessary and

su_cient physical condition. In this respect, the uncertainty relation in SchrSdinger form is more

fundamental than Heisenberg's relation in the usual, less stronger form aqa_ >_ _/4. Moreover,

the SchrSdinger form is invariant for linear canonical transformations (in general Sp(2n, R) in-

variant transformations), while the usual form is not. Finally, for quadratic Hamiltonians, which

are closely related to the Gsussian Wigner distribution, the Schr6dinger form remains invariant

during the motion if the variances and the covariance are dependent on time. Indeed, in this case

the quantum LiouviUe equation is equivalent to the classical Liouville equation and therefore q,

_, aq, a_ and aq_ have the same time dependence as in the classical case. These are further reasons

why the uncertainty relation in Schr_dinger form is more relevant than Heisenberg's relation in

the usual form.

For systems with an arbitrary number of degrees of freedom the strong form of Heisenberg's

uncertainty relation is derived from the inequality tr(at/_a) >_ 0 where the vector a is given by

a = A(_ - q) + B(I_ - l_), A and B being arbitrary matrices, and which takes the form:

I A' I l aq,, a,a'- 'h/2 I I A I>0. (3)B t ap,q - di/2 apa, B -

Therefore Heisenberg's uncertainty relation in Schr5dinger form takes now the matrix form:

- ,h/3/2 > o. (4)

I I I°*1where a is the covariance matrix "q.q "_ and/3 the fundamental symplectic matrix __ 0 •
op,q o]lJ

Theorem 4 The necessary and su_cient conditions for a Gaussian phase space function to be a

Wigner distribution is that the covariance matriz a satisfies Heisenberg's uncertainty relation in

SchrSdinger form: a - _/3/2 __ 0 [4].

Analogous remarks as for the bivariate j.p.d, are valid for the multivariate j.p.d., the eq. 4 is

now Sp(2n, R) invariant. The theorem entails a considerable simplification with respect to the
theorem of Simon, Sudarshan and Mukanda [17], where Sp(2n, R) invariant powers of/3a -_ satisfy

n complicated inequalities. The difference between a pure and a mixed state is given by a theorem

of Littlejohn [16]:

Theorem 5 The necessary and sufficient condition for a Gaussian Wigner distribution to be a

pure state is that the matri_ 2a/h is a syraplectic matriz: a3a = (h2/4)3.

In two dimensions the matrix relation reduces to aqap - aq,p _ = h2/4.
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5 Heisenberg's uncertainty relation in SchrSdinger form

for j.p.d, depending on the measurement arrangement

It was argued in section 3 that the construction ofj.p.d, of class (2) is not restricted by Wigner's

theorem. Requiring Galilei inv_ance, linearity and positivity for any density matrix describing

the object system, we have for the most general form of the j.p.d.:

f(q,p)= _-_tr(D_.:._.D,._._,) (s)

where _,,,,o,and _.s_ are the density matrices describing exhaustively the measurement apparatus

and the object system and bqa represents the displacement operator. If both _=.. and _.b_ are

pure states then f(q, p) reduces to the transition probability .f(q, p) = _-"tr(_b,,_., bq_.bj). The

marginal distributions are always given by the convolution of two true probability densities:

f(q,p)dp=< qlA_o [q >* < q[ #_slq >, (6)

f(q,p)dq=< p[;,,_, [p >, < P lP_j ]P >, (7)

which can be seen as accuracy calibrationsgiven by the con/idencefunctions< q ]_,,,_,[q >

and < p [_,,_. IP >. The coupleq,< q IP,,,_[q > togetherwith p,< p IP-_o IP > can alsobe

interpretedas a fuzzy sample point in phase space [12].Remark alsothat,for thesej.p.d,the

ordening of operatorsisequivalentwith a measuring procedure.One can alsowritethe j.p.d,as

a convolution of two Wigner distributions:

f(q,P) = f,,,_,(q,P)* fobj(q,P), (8)

the firstone representingthe measurement procedureand the secondone describingthe objectsys-

tem. This "smoothing" or "coarsegraining"ofthe Wigner distributioneleminatesfastoscillations

in h and givesthereforea betterrepresentationin the classicallimit[18].Another consequence

of the lastformula isthat the covariancematrix cristhe sum ofthe covariancematrix #_i ofthe

objectsystem and the _m_° of the measurement procedure. Hence we obtainthe "operational"

uncertaintyrelation

- ,_/__>0. (9)

which reduces in one dimension to u_ep - _q2 > h2. This operationaluncertaintyrelationis

in accordance with the experimental uncertaintyrelation(Aq)_(Ap),ffi,._h [19]. Comparing

thiswith the uncertaintyrelationsforthe j.p.d,of the precedingsection,we observe that the

inequalitiesare the same, exceptforthe essentialdifferencethat h replacedby 2h, expressingthe

presenceof extranoisedue to the measurement procedure.
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